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LETTER TO THE EDITOR 

A bosonic version of objects with fermion number 

Luis J Boya and Javier Casahorran 
Departamento de Fisica Teorica, Facultad de Ciencias, Universidad de Zaragoza, 50009 
Zaragoza, Spain 

Received 11 April 1988 

Abstract. Using the bosonisation procedure and a ‘trial-and-error’ method for general 
coupled non-linear field equations, we obtain a bosonic version of objects with fermion 
number f. 

It is a well known fact nowadays that, in the presence of background fields with a 
non-trivial topological content, for example kinks in one-dimensional systems and 
monopoles in the three-dimensional ones, the fermionic number associated with the 
vacuum need not be integer and can even result in a transcendental function of the 
coupling constants of the theory [ 11. Although the phenomenon, normally called 
fractionisation, can be interpreted physically according to different approaches 
(diagrammatic techniques, anomalies, Levinson’s theorem), from a mathematical point 
of view it is related to the 7 invariant of the corresponding Dirac Hamiltonian [2]. 
This construct, introduced in the analysis of the index theorem for non-compact 
manifolds, represents a conveniently regularised expression of the operator’s spectral 
asymmetry. 

A simplified situation is reached supposing that the interaction admits a specific 
charge conjugation symmetry C, which relates the energy states SIEl with those others 
of -1El. It is understood that in these circumstances the physical interest of the 
problem, which in the general case spreads over all the spectrum, will only be 
concentrated in the zero-energy eigenstates. In fact, if they are normalisable, each one 
of them contributes 4 to the fermionic number of the vacuum. 

The theorem to be applied is the index theorem in open (non-compact) spaces, as 
first stated by Callias, and Bott and Seeley [3]. In this case the topological character 
of the phenomenon is obvious and shown already by observing that the corresponding 
index depends on the values that the background scalar field takes at infinity. For 
bidimensional systems the fractionisation in the presence of symmetry C has been 
related to typical SUSY quantum mechanics problems. In fact it is trivial to transform 
the initial Dirac equation for the spinor T(x )  into a pair of Schrodinger type equations 
for the components v ( x )  and u ( x ) .  It happens then that the form of the equations 
enables us to interpret them as a simple SUSY quantum mechanics exercise, with the 
kink or classical solution &(x) for the scalar field working as superpotential W ( x )  
[4]. Under these conditions the presence of zero modes can be detected by means of 
the Witten index A@) [ 5 ] ,  an object closely related to the spontaneous breaking of 
the SUSY. 
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With regards specifically to the A@) determination, it is worth pointing out that 
in the presence of kinks, unlike for example what happens with W(x)=x“  type 
superpotentials, an explicit dependence on the p regulator occurs; only in the limit 
in which p itself tends to infinity are the relevant physical results recovered [6]. 
Applying the Callias theorem, the limit to be considered is that which corresponds to 
taking the parameter z equal to zero [7]. 

For the models formulated in 1 + 1 dimensions the study can be made easier using 
the so-called bosonisation method, both in its Abelian and non-Abelian versions. In 
the Abelian case the fermionic field is written as a non-local expression of the associated 
bosonic field, but certain bilinears are transformed in a strictly local way [8]. 

The aim set forth in this letter is to determine a bosonic version of the object whose 
fermionic number is 4. To do this we will begin from the simple theory used by Jackiw 
and Rebbi [9], where they pointed out the possibility of fractionisation by means of 
a detailed analysis of the fermionic field. Here we will apply as an alternative the 
bosonisation procedure, in such a way that the corresponding study must be done on 
a two scalar coupled field system. Finally, and through a ‘trial-and-error’ technique 
[lo], which in fact restricts the number of free constants, it is possible to reach the 
desired objective. 

Let us begin with a (A44)2 theory governed by the following Lagrangian: 

L = [$(a,+)’-$i (4’-  m2/A)’] dx. ( 1 )  I 

I 

In the classical approach the homogeneous vacuum states are 4 = *m/A  1/2; to 
introduce the kink it is enough to take an interpolation between 4 = -m/A ‘I2 at x = -a 
and 4 = m/ A 

Let us perform now a coupling to Dirac fermions in the typical Yukawa form: 
for x = 03. 

L =  [4(e,4)’+Qiy,a,~-_A(4’- m2/A)’-g4QV] dx. (2) 

By means of the standard bosonisation techniques, with the arbitrary mass parameter 
M equal to the already available m, the Lagrangian will take the form [ l l ]  

L =  [4(a,~)’+~(a,u)’-~A(42- mZ/A)’-gm4 cos 2&u] dx (3) J 
which describes a sine-Gordon system coupled to another scalar field. Once again 
from a classical point of view the homogeneous vacua are 

where the a’ value just refers to the minimum of the function 

F(  4 )  = $A ( +2  - m’/A)’ - gm4.  ( 5 )  
To guarantee that indeed they are genuine minima we must look at the Hessian, 

which for either of the two possibilities ( 5 )  is reduced to 

O 4 .rrmga O ’ I- 
Curiously the condition which must be imposed on a’ is to satisfy 

a’> m / J h  (7) 
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just the point from which the effective potential calculated at one-loop order takes on 
complex values [ 121. 

When considering how the formation of kinks not only the behaviour of 4 must 
be specified but also prescriptions which refer to the new scalar field a are necessary. 
A first possibility would consist in prescribing a transition of (4, a )  from (-a’, 0) to 
( - U ’ ,  T”’). If we remember that in terms of a the fermionic number is [ll] 

Qf= (1/J;;)[+) - 4 - a ) l  (8) 

the previous case is included in the homogeneous vacuum case for 4, which as we 
know can only give rise to integer fermionic numbers. 

The most interesting situation is represented by a system which interpolates from 
( - U ’ ,  0) to (a’, f~”’) and that naturally exhibits the fractionisation phenomenon. We 
have shown therefore the following fact: the vacuum fermionic charge, typical one-loop 
effect in the original version of the theory, can be reproduced in a particularly simple 
way on a classical level just by a previous bosonisation of the model. 

We are now prepared to tackle the determination of a topological type kink with 
two coupled scalar fields and that in addition would support a fermionic number equal 
to f. It is a matter of finding a static solution, with the adequate boundary conditions, 
of the system 

d2+/dx2= A+(+’-m’/A)+gm cos 2&a 

d2a/dx2 = - g m 2 J i 4  sin d i u .  (9) 

Some examples of this same kind have been solved with more or less success, 
always bearing in mind that there is not a general procedure that resolves situations 
such as those. The method to be used here is suggested in [lo], and it can be defined 
as a ‘trial-and-error’ technique which, although restricting the free parameters of the 
theory, is capable of providing at least some solutions. 

With the potential of (3) 

V( 4, a)  = :A ( 4’ - m’/ A ) 2  + gm4 cos 2 L a  (10) 

if we look for a (4, a)  solution which interpolates from ( - U ‘ ,  0) to (a ’ ,  4~’’~) the most 
naturai choice for the trial orbit function g (  4, a)  would be [ 101 

- 
g(4, a)  = 4 + U’  COS 2JTa = 0. (11) 

Taking into account that 

ag/a4 = 1 ag/aa = - a ’ 2 J i  sin 2J‘;;a 

and 

aV/a+=A4(4’-m2/A)+gm cos2&a aV/aa=-gm42&s in2&~ (13) 

we can write [lo] 



L676 Letter to the Editor 

Using now the trial orbit marked 

(A43-m24-(gm/a ' )4)  d& 
e- 

by (11) the previous integral is converted into 

= al24.rr sin2 2 J i u  J - g m J r a ' s i n  4JT6 d 6  (15) 
0 

and we obtain easily 
+A 4 - ( m + gm / a')  4' = $( 4 Tgm / a ') 44 - 4( a'4 .rrgm ) 4 '. (16) 

A = 4.rrgm/at m2+gm/a r=  a'4rgm. (17) 

The pertinent identifications would then be 

Let us return now specifically to the solution of the differential equations which 
correspond to 4 and a, since having determined an orbit they uncouple and so the 
integration is feasible; in fact 

d2+/dx2= A43-(m2+gm/a')4.  (18) 
Calling mr2  = m2+ gm/a'  it is trivial to obtain 

(19) 
m' 4(x) = a' tanh-x. J;i 

Regarding the a-field bosonised version of the 9, the equation is 

The integration is carried out by bearing in mind that it is a typical sine-Gordon 
d2a/dx2 = gmJLa '  sin 4J-TTa. (20) 

problem 

In view of (19) and (21) the essentially topological character of the kink is seen; 
it suffices to observe the values of the fields (4, a )  at x = -CO and x = CO. Moreover 
the fermionic number which exhibits the solution found is 

1 of= --=[a(CO) - a(-CO)] =;. 
JT 
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